STAN <u>ru-=vy far</u>

2.簡易モデルの作成 - 1(解析の為の必須項目)

ここでは単純な8節点のモデルを作成し、操作の流れと解析を実行する為に最低限必要なデータ項目を把握 します。

<解析を実行する為の必須入力項目>

下図は STAN を起動した画面です。<u>プルダウン・メニュー</u>から [**データ(D)**] をクリックすると、入力 項目が表示されます。STAN / 3D のデータは、この 20 項目より構成されています。

🟪 STAN/3D	構造計画研究所	Ť						
ファイル(E) 表示(⊻)	切取りスニーム(Z)	選択範 匪 (C)	データ(D) 編集(E)	境界·荷重(L)				
入力ファイル		\rightarrow	✔ 初期設定					
Ex-009.dat		\rightarrow	✔ 節点					
1			低斜座標					
使用単位系	●●● 境界条件							
STAN系		✓ 同一変位·剛床						
作業内容			✓ 材料特性					
モデル			✓ 断面性能					
」 			削 域					
-99.97-17 町里 2			材晴八不					
Esc 🚘 🗖			✓ 骨組部材					
			◆ トラス					
選択確定			壁上レメント					
補写・削除			副物为神八不 成为韩敏法要					
			心力計算凹面 単位荷垂					
表示 表示			● 単山町里 → 荷香宇美彩					
条件 項目			♥1可里定義/ =%					
71		\rightarrow	✔ 節点荷重					
			CMQ荷 <u>重</u>					
			部材荷重					
			→ 解析ケーフテパーカ					
ା ପ୍ ପ୍ 🔍			▼ m=n// ×/ ×					

その中でも解析を行うためには、以下の8項目の入力が必要です。

初期設定単位系を選びます。材料特性モデルの構成材料を定義します。断面性能モデルを構成する断面形状(剛性)を定義します。節点節点座標を設定します。境界条件モデル全体の固定状態を設定します。骨組部材部材を配置します。節点荷重(荷重データ)荷重を設定します。解析ケース設定した荷重を解析対象にします。

<モデル概要>

- 概要 : 8節点の箱型形状。
- 材料 : データベースより鋼を参照。
- 部材 : 矩形 B×Dで30cm×60cm
- 支点: 柱脚全てピン支持とする。
- 寸法:一辺 5mの正方形形状で、高さ 8mとする。(下図参照)

解析ケース1:一つの節点にX方向から20t、Y方向から10tを同時に加力。

以降より簡易モデルの新規作成手順を記述します。実際に操作しながら進めてください。

<u>1.STAN を起動します</u> STAN が起動され、STAN の画面が表示された状態よりの説明となります。

データの新規作成を開始します。

STAN/3D 構造計画研究所	
ファイル(E) 表示(<u>い</u>)	
データ新規作成(<u>N</u>)	Otrl+N
解析入力ファイルを開く(①)	Ctrl+O
部材ファイル作成 材料特性データベース編集 断面性能データベース編集	
プリンダ設定 スケールを設定して印刷 画面のハードコピー	Gtrl+P
入力ファイルの上書き保存(<u>S</u>) 入力ファイルに名前を付けて保存(<u>A</u>)	Ctrl+S
STAN/3D 終了⊗	
取り消し	

<u>2.初期設定を行います</u>

初期設定の画面が出ます。単位系と材料を定義した後 [材料特性設定] ボタンをクリックします。

初期設定 タイトル 単位系 1:STAN系 CMQ計算時に剛域を考慮する 計算条件 ねじり剛性を無視する 世ん断剛性計算時に形状係数 の自動計算を行う 引張材指定時の応力計算回数 5 SI単位換算係数 初期値に戻す	今回、単位系に [STAN 系] を選択します。 STAN 系とは、STAN 内部で独自設定した単 位系です。t・m系を基本とし、材料定数は Kg・cm、断面形状は cm を利用するといった、 利用頻度の高そうな単位系を組み合わせた単 位系です。
材料特性設定 OK 「	[材料特性設定] ボタンをクリック。

3.材料の定義を行います

初期設定の画面が出ます。データベースより鉄の材料定数を参照します。

ファイル 編集 モード L=1						
材料 ヤング係数 せん断弾性係数 温度膨張率 ポアソン比 単位重量 材料名 番号 kg/cm2 kg/cm2 よ/m3						
[DB参照] ボタンをクリック。 DB参照 行追加 OK キャン地						

データベースのデータが挿入されています。

4.断面性能の定義を行います

断面性能のデータを表示します。

断面性能データが表示されます。

断面性能(剛性)データ	
ファイル 編集 モード L=1	一つだけ形状定義を行います。
断面 材料種 形 P1 cm P2 cm 1 1 1 1 1 1 1 1 1 1 30 60	断面記号 1、 材料番号 1(先程定義した材料) 種別 1(種別が一つなので) 形状 1(矩形を意味します)
種別 1=水平・2=鉛直・3=斜め・4=その他・5=トラス 形状 0=断面性能直接入力 1=矩形 2=円形 3=鋼管 4=BOX 5=I形鋼 6=H形鋼 7=溝形鋼 8=L形鋼	P1 30(矩形の横幅 30cm)、 P2 60(矩形の高さ 60cm) を入力します。

5. グリッド機能でペースとなる形状を作成します

<u>編集メニュー</u>を表示します。

6.モデル図に節点番号等のデータ情報を表示します

[表示項目]のボタンをクリックして表示したい項目を選択します。

モデル図に選択された情報が表示されます。(節点荷重は未定義なので表示されません。)

<u>7.支点(境界条件)を設定します</u>

1番の節点を [ダブルクリック] して、表示された画面でピン支点を設定します。

ピン支点を表す三角形が柱脚に表示されます。

8.荷重を設定します

今回は節点荷重を設定します。5番の節点を [ダブルクリック] して、表示された画面で入力します。

節点荷重を表す矢印と数値が表示されます。

<u>9.解析ケースを設定します</u>

設定した節点荷重は [荷重定義 1] に蓄えられています。この [荷重定義 1] を解析ケースとして設定し ます。ただ 荷重定義 を行っただけでは解析対象になりません。解析を行うには、解析ケースでの設定 が必要です。

以上で8つの必須項目の入力が完了です。これで解析が可能です。

	初期設定	単位系
	材料特性	モデルの構成材料
	断面性能	モデルを構成する断面の形状(剛性)
	節 点	節点座標
	境界条件	モデル全体の固定状態
	骨組部材	部材の配置
	節点荷重(荷	苛重データ) 荷重
_	解析ケース	解析対象となる荷重定義番号

解析を実行する前にファイルを保存します。

<u>11.解析を実行します</u>

解析の進行を示す「白い画面」が表示されますが、一瞬で閉じてしまいます。(大きなモデルでしたら確認 できると思います。)その後再び上図の画面に戻りますので [終了] をクリックしてください。以上で解析の 実行は終了です。

<u>12.変形図を表示します</u>

13.結果リストを表示します

全節点の変位が出ています。「DIS」は変形量、「ROT」は回転角を示します。 1、 2、 3は、 各節点の持っている座標系(変位座標系と呼びます)のX,Y,Zを意味します。よって左から順に、節 点番号、X方向変形量、Y方向変形量、Z方向変形量、X軸回り回転角、Y軸回り回転角、Z軸回り回 転角となります。確認ができましたら、スクロール・バーで画面をさらに下側に移動して[**骨組部材** の部材端力]を表示させます。

1	結果の出	ታ								
	*** 骨組部材の部材端力									
	(解析ケース 1: 節点5水平加力)									
				軸力 せん断力		モーメント				
	部材	誈	向点	AXIAL	SHEAR-y	SHEAR-z	MOMENT-×	MOMENT-y	MOMENT-z	
	番号	君	盱号	(tf)	(tf)	(tf)	(tf*m)	(tf*m)	(tf*m)	
	I .	т	1	0 00	0.91	-9 50	0.20	<u> </u>	0 70	
	I 'i	1	1 0	0.00	-0.91	-3.00	-0.20	20.02	0.70	
	I '	J 	2	0.00	-0.01	3.00	-0.26	20.00	0.70	
		中央		-	-	-	0.26	0.01	0.00	
	2	I	3	0.00	0.31	-6.46	0.27	16.14	0.78	
	1	J	4	0.00	-0.31	6.46	-0.27	16.14	0.78	
		中央		-	-	-	0.27	0.00	0.00	
	3	Ι	1	0.00	0.31	-2.81	0.34	7.04	0.78	
	1	J	3	0.00	-0.31	2.81	-0.34	7.02	0.78	-
								ファイルこ保存	終了	

一番左の番号が部材番号です。AXIAL は軸力、SHEAR はせん断力、MOMENT はモーメントを示し ます。部材番号の下の番号は部材の材料番号です。STAN では各部材の両端を I 端、J 端と呼びます。 SHEAR 及び MOMENT の後に付いている -x,-y,-z は、部材の持っている座標系(部材座標系と呼 びます)を示します。ちなみに部材座標系の X は部材の軸方向ですので「MOMENT-x」は、ねじれ (トルク)を示します。

確認ができましたら [終了] をクリックしてください。解析結果出力コントロール画面 に戻りますの で、ここでも [終了] をクリックしてください。

<u>14.STAN を終了します</u>

以上で終了です。